Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

$Ni_2Si(P_2O_7)_2$

Yahya Toubi,^a Rachid Essehli,^a Michal Dušek,^b Karla Fejfarová^b and Brahim El Bali^a*

^aLaboratory of Mineral Solid and Analytical Chemistry, "LCSMA", Department of Chemistry, Faculty of Sciences, University Mohamed I, PO Box 717, 60000 Oujda, Morocco, and ^bInstitute of Physics of the ASCR, Na Slovance 2, 182 21 Praha 8, Czech Republic

Correspondence e-mail: belbali@fso.ump.ma

Received 7 May 2009; accepted 8 June 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (P–O) = 0.002 Å; R factor = 0.016; wR factor = 0.045; data-to-parameter ratio = 10.4.

Dinickel(II) silicon bis[diphosphate(4–)], Ni₂Si(P₂O₇)₂, is isotypic with other phosphates of the formula M_2 Si(P₂O₇)₂ (M =Co, Cd). All atoms except Si (site symmetry 2) are found in general positions. Ni₂O₁₀ dimers formed from edge-sharing NiO₆ octahedra are linked by corners and O–P–O bridges, forming slabs parallel to (100), which are in turn interconnected by O–Si–O contacts.

Related literature

For the structures of isotypic compounds, see: Glaum & Schmidt (1996) for $Co_2Si(P_2O_7)_2$ and Trojan *et al.* (1987) for $Cd_2Si(P_2O_7)_2$. For bond-length and angle data, see: Bostroem (1987); Durif (1995). For the extinction correction, see: Becker & Coppens (1974).

Experimental

Crystal data

Ni₂Si(P₂O₇)₂ M_r = 493.3 Monoclinic, C2/c a = 16.8615 (9) Å b = 4.8948 (2) Å c = 12.1925 (5) Å β = 103.693 (4)°

Data collection

Oxford Diffraction Xcalibur diffractometer with Atlas (Gemini ultra Cu) detector Absorption correction: analytical (*CrysAlis RED*; Oxford $V = 977.69 \text{ (8) } \text{Å}^{3}$ Z = 4 Mo K\alpha radiation \mu = 4.72 mm⁻¹ T = 295 K 0.27 \times 0.16 \times 0.07 mm

Diffraction, 2006) $T_{\min} = 0.438$, $T_{\max} = 0.829$ 4978 measured reflections 1013 independent reflections 877 reflections with $I > 3\sigma(I)$ $R_{\text{int}} = 0.023$ Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.016$ $wR(F^2) = 0.045$ S = 1.341013 reflections

97 parameters $\Delta \rho_{\text{max}} = 0.22 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.23 \text{ e } \text{ Å}^{-3}$

Table 1			
Selected	bond	lengths	(Å).

Ni1-O1	1.9631 (18)	Si1-O7 ^{vii}	1.5881 (16)
Ni1-O4 ⁱ	2.2351 (17)	P1-O1	1.4759 (17)
Ni1-O4 ⁱⁱ	2.1436 (14)	P1-O2	1.564 (2)
Ni1-O5 ⁱⁱⁱ	2.1271 (17)	P1-O3 ^{viii}	1.5888 (15)
Ni1-O5 ^{iv}	2.1509 (14)	P1-O4	1.5132 (16)
Ni1-O6	1.9660 (18)	P2-O3	1.5873 (19)
Si1-O2 ^v	1.6018 (18)	P2-O5	1.5017 (17)
Si1-O2 ^{vi}	1.6018 (18)	P2-O6	1.4768 (18)
Si1-07	1.5881 (16)	P2-O7	1.5458 (16)

Symmetry codes: (i) x, y + 1, z; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) x, y - 1, z; (iv) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (v) $x + \frac{1}{2}, y + \frac{3}{2}, z$; (vi) $-x + \frac{1}{2}, y + \frac{3}{2}, -z + \frac{1}{2}$; (vii) $-x + 1, y, -z + \frac{1}{2}$; (viii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (viii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (viii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (vi) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (vi) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (vi) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (vii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (vii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (vii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (vii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (vii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (vii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (vii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (vii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (vii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}, -$

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *Superflip* (Palatinus & Chapuis, 2007); program(s) used to refine structure: *JANA2006* (Petříček *et al.*, 2006); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *JANA2006*.

We thank the Grant Agency of the Czech Republic (grant No. 202/06/0757) for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2073).

References

- Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.
- Bostroem, D. (1987). Am. Mineral. 72, 965-972.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Durif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York: Plenum.
- Glaum, R. & Schmidt, A. (1996). Acta Cryst. C52, 762-764.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Palatinus, L. & Chapuis, G. (2007). Superflip. http://superspace.epfl.ch/ superflip.
- Petříček, V., Dušek, M. & Palatinus, L. (2006). *JANA2006*. Institute of Physics, Praha, Czech Republic. http://www-xray.fzu.cz/jana/jana.html.

Trojan, M., Brandová, D., Fábry, J., Hybler, J., Jurek, K. & Petříček, V. (1987). Acta Cryst. C43, 2038–2040.

supplementary materials

Acta Cryst. (2009). E65, i55 [doi:10.1107/S1600536809021734]

Ni₂Si(P₂O₇)₂

Y. Toubi, R. Essehli, M. Dusek, K. Fejfarová and B. El Bali

Comment

Although the isostructural silicodiphosphates M_2 Si(P₂O₇)₂ have been reported for M = Fe, Ni, Co, Cu, and Cd, full singlecrystal structure determinations have been carried out only for the Co and Cd members (Glaum & Schmidt, 1996; Trojan *et al.*, 1987). The structure of Ni₂Si(P₂O₇)₂ is reported herein. Its cell parameters are consistent with those obtained earlier from Guinier photographs (Glaum & Schmidt, 1996). The three-dimensional framework is built up of NiO₆ octahedra, SiO₄ tetrahedra, and P₂O₇ diphosphate groups. Ni₂O₁₀ dimers, formed from pairs of edge-sharing NiO₆ octahedra, are interconnected through corners (O4) and O–P–O bridges of the diphosphate groups to generate slabs that lie parallel to (100) (Fig. 1). Neighboring slabs are connected through O–Si–O linkages from the SiO₄ groups (Fig. 2). The NiO₆ octahedron, whose apices are formed from one bidentate and four monodentate P₂O₇ groups (Fig. 3), is strongly distorted, with an average Ni–O distance [2.098 (2) Å] that is between those in Ni₂P₂O₇ (2.114 Å) and Ni₂SiO₄ (2.080 Å) (Bostroem, 1987). The P₂O₇ group adopts a nearly eclipsed conformation, with an average P–O distance [1.532 (2) Å] that is similar to other diphosphates (Durif, 1995) and a rather small P–O–P angle [132.51 (12) °] owing to its bidentate coordination to the Ni center.

Experimental

 $Ni_2Si(P_2O_7)_2$ in the form of powder was prepared by stoichiometric reaction of SiO₂ (99.9%, Aldrich) and $Ni_2P_4O_{12}$ (the latter being obtained from a reaction of NiO and $NH_4H_2PO_4$ in a 2:4 ratio at 750 °C for 24 h under O₂ atmosphere). The mixture was heated at 500 °C under Ar atmosphere for 2 days and 700 °C for 36 h with intermediate grindings to ensure complete reaction. Subsequent melting at 1300 °C followed by slow cooling to room temperature at a rate of 5 ° h⁻¹ resulted in green crystals of the title compound.

Figures

Fig. 1. Ni_2O_{10} dimers and their connection in $Ni_2Si(P_2O_7)_2$.

Fig. 2. Projection of Ni₂Si(P₂O₇)₂ along [010].

Fig. 3. Local coordination geometry around the Ni atom in Ni₂Si(P₂O₇)₂. Symmetry codes: (i) x, 1 + y, z, (iii) x, 1 - y, z (ii) -x + 1/2, y + 1/2, -z + 1/2, (iv) -x + 1/2, -y + 3/2, -z, (v) -x + 1/2, -y + 1/2, -z. Displacement ellipsoids are drawn at the 50% probability level.

dinickel(II) silicon bis[diphosphate(4-)]

Crystal data	
Ni ₂ Si(P ₂ O ₇) ₂	$F_{000} = 968$
$M_r = 493.3$	$D_{\rm x} = 3.351 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 3598 reflections
<i>a</i> = 16.8615 (9) Å	$\theta = 2.7 - 26.5^{\circ}$
b = 4.8948 (2) Å	$\mu = 4.72 \text{ mm}^{-1}$
c = 12.1925 (5) Å	T = 295 K
$\beta = 103.693 \ (4)^{\circ}$	Plate, yellow
$V = 977.69 (8) \text{ Å}^3$	$0.27\times0.16\times0.07~mm$
Z = 4	

Data collection

Oxford Diffraction Xcalibur diffractometer with Atlas (Gemini ultra Cu) detector	1013 independent reflections
Radiation source: fine-focus sealed tube	877 reflections with $I > 3\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.023$
Detector resolution: 20.7567 pixels mm ⁻¹	$\theta_{\text{max}} = 26.5^{\circ}$
T = 295 K	$\theta_{\min} = 3.4^{\circ}$
Rotation method data acquisition using ω scans	$h = -20 \rightarrow 20$
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006)	$k = -6 \rightarrow 6$
$T_{\min} = 0.438, T_{\max} = 0.829$	$l = -15 \rightarrow 15$
4978 measured reflections	

Refinement

Weighting scheme based on measured s.u.'s $w = 1/[\sigma^2(I) + 0.0004I^2]$
$(\Delta/\sigma)_{\text{max}} = 0.010$
$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
Extinction correction: B–C type 1 Lorentzian isotrop- ic (Becker & Coppens, 1974)

97 parameters

Extinction coefficient: 370 (80)

Special details

Experimental. Absorption correction CrysAlisPro; Oxford Diffraction, 2009; Version 1.171.33.34d (release 27-02-2009 CrysAlis171.NET) Absorption correction: analytical, implemented in CrysAlis RED (Oxford Diffraction, 2006).

Refinement. The refinement was carried out against all reflections. The conventional *R*-factor is always based on *F*. The goodness of fit as well as the weighted *R*-factor are based on *F* and F^2 for refinement carried out on *F* and F^2 , respectively. The threshold expression is used only for calculating *R*-factors *etc.* and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force *S* to be one. Therefore the values of *S* are usually larger than the ones from the *SHELX* program.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Ni1	0.247526 (19)	0.35079 (6)	0.12916 (2)	0.00715 (11)
Si1	0.5	1.16111 (18)	0.25	0.0054 (3)
P1	0.12621 (4)	-0.13090 (12)	0.13612 (5)	0.00608 (18)
P2	0.36378 (4)	0.83352 (12)	0.08433 (5)	0.00583 (18)
O1	0.14379 (10)	0.1598 (3)	0.12002 (13)	0.0100 (5)
O2	0.04526 (11)	-0.1475 (3)	0.17733 (12)	0.0088 (5)
O3	0.40484 (11)	0.7811 (3)	-0.01825 (12)	0.0091 (5)
O4	0.19424 (10)	-0.3018 (3)	0.20675 (12)	0.0088 (5)
05	0.29494 (10)	1.0316 (3)	0.04486 (12)	0.0091 (5)
O6	0.34569 (10)	0.5703 (3)	0.13237 (12)	0.0101 (5)
O7	0.43615 (10)	0.9697 (3)	0.16829 (13)	0.0116 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.00662 (18)	0.00720 (17)	0.00757 (17)	-0.00117 (13)	0.00154 (12)	0.00048 (11)
Si1	0.0046 (5)	0.0065 (4)	0.0053 (4)	0	0.0012 (3)	0
P1	0.0054 (3)	0.0070 (3)	0.0061 (3)	-0.0008 (2)	0.0019 (2)	-0.0002 (2)
P2	0.0055 (3)	0.0064 (3)	0.0054 (3)	-0.0008 (2)	0.0010 (2)	-0.0003 (2)
O1	0.0076 (9)	0.0082 (8)	0.0146 (8)	-0.0006 (7)	0.0035 (7)	0.0012 (7)
O2	0.0085 (9)	0.0103 (8)	0.0088 (7)	-0.0003 (7)	0.0045 (6)	0.0001 (6)
O3	0.0086 (9)	0.0128 (9)	0.0066 (7)	-0.0004 (7)	0.0030 (6)	-0.0013 (6)
O4	0.0079 (9)	0.0094 (8)	0.0085 (8)	0.0019 (7)	0.0009 (7)	-0.0009 (6)
O5	0.0091 (9)	0.0098 (8)	0.0081 (7)	0.0015 (7)	0.0015 (6)	-0.0008 (7)
O6	0.0090 (9)	0.0099 (8)	0.0112 (8)	-0.0022 (7)	0.0019 (7)	0.0025 (6)
O7	0.0092 (10)	0.0145 (9)	0.0099 (8)	-0.0035 (7)	-0.0002 (7)	-0.0037 (7)

Geometric parameters (Å, °)

Ni1—O1	1.9631 (18)	Si1—O7 ^{vii}	1.5881 (16)
Ni1—O4 ⁱ	2.2351 (17)	P1—O1	1.4759 (17)

supplementary materials

Ni1—O4 ⁱⁱ	2.1436 (14)	P1—O2	1.564 (2)
Ni1—O5 ⁱⁱⁱ	2.1271 (17)	P1—O3 ^{viii}	1.5888 (15)
Ni1—O5 ^{iv}	2.1509 (14)	P1—O4	1.5132 (16)
Ni1—O6	1.9660 (18)	P2—O3	1.5873 (19)
Si1—O2 ^v	1.6018 (18)	P2—O5	1.5017 (17)
Si1—O2 ^{vi}	1.6018 (18)	P2—O6	1.4768 (18)
Sil—O7	1.5881 (16)	P2—O7	1.5458 (16)
O1—Ni1—O4 ⁱ	86.81 (7)	O2 ^{vi} —Si1—O7	110.56 (9)
O1—Ni1—O4 ⁱⁱ	95.28 (6)	O2 ^{vi} —Si1—O7 ^{vii}	109.83 (8)
O1—Ni1—O5 ⁱⁱⁱ	93.12 (7)	O7—Si1—O7 ^{vii}	107.67 (10)
O1—Ni1—O5 ^{iv}	89.28 (6)	O1—P1—O2	108.10 (10)
01—Ni1—O6	174.93 (7)	O1—P1—O3 ^{viii}	111.07 (9)
O4 ⁱ —Ni1—O4 ⁱⁱ	90.65 (6)	O1—P1—O4	117.37 (9)
O4 ⁱ —Ni1—O5 ⁱⁱⁱ	176.27 (5)	O2—P1—O3 ^{viii}	98.09 (9)
O4 ⁱ —Ni1—O5 ^{iv}	98.09 (6)	O2—P1—O4	112.97 (9)
O4 ⁱ —Ni1—O6	89.81 (7)	O3 ^{viii} —P1—O4	107.57 (9)
O4 ⁱⁱ —Ni1—O5 ⁱⁱⁱ	93.07 (6)	O3—P2—O5	107.46 (9)
O4 ⁱⁱ —Ni1—O5 ^{iv}	170.37 (7)	O3—P2—O6	109.95 (10)
O4 ⁱⁱ —Ni1—O6	88.53 (6)	O3—P2—O7	99.69 (9)
O5 ⁱⁱⁱ —Ni1—O5 ^{iv}	78.19 (6)	O5—P2—O6	118.30 (10)
O5 ⁱⁱⁱ —Ni1—O6	90	O5—P2—O7	111.28 (9)
O5 ^{iv} —Ni1—O6	87.45 (6)	O6—P2—O7	108.55 (9)
O2 ^v —Si1—O2 ^{vi}	108.39 (10)	Sil ^{ix} —O2—P1	140.73 (11)
02 ^v —Si1—07	109.83 (8)	P1 ^{viii} —O3—P2	132.51 (12)
O2 ^v —Si1—O7 ^{vii}	110.56 (9)	Si1—07—P2	168.95 (12)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iii) *x*, *y*-1, *z*; (iv) -*x*+1/2, -*y*+3/2, -*z*; (v) *x*+1/2, *y*+3/2, *z*; (vi) -*x*+1/2, *y*+3/2, -*z*; (vii) -*x*+1/2; (vii) -*x*+1/2; (viii) -*x*+1/2, -*y*+1/2, -*z*; (ix) *x*-1/2, *y*-3/2, *z*.

Fig. 2

